Reheating of the Universe as holographic thermalization
نویسندگان
چکیده
Article history: Received 10 February 2016 Accepted 9 June 2016 Available online 14 June 2016 Editor: M. Trodden Assuming gauge/gravity correspondence we study reheating of the Universe using its holographic dual. Inflaton decay and thermalisation of the decay products correspond to collapse of a spherical shell and formation of a blackhole in the dual anti-de Sitter (AdS) spacetime. The reheating temperature is computed as the Hawking temperature of the developed blackhole probed by a dynamical boundary, and is determined by the inflaton energy density and the AdS radius, with corrections from the dynamics of the shell collapse. For given initial energy density of the inflaton field the holographic model typically gives lower reheating temperature than the instant reheating scenario, while it is shown to be safely within phenomenological bounds. © 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
منابع مشابه
The oscillation effects on thermalization of the neutrinos in the universe with low reheating temperature
We study how the oscillations of the neutrinos affect their thermalization process during the reheating period with temperature O(1) MeV in the early universe. We follow the evolution of the neutrino density matrices and investigate how the predictions of big bang nucleosynthesis vary with the reheating temperature. For the reheating temperature of several MeV, we find that including the oscill...
متن کاملReheating Temperature and Inflaton Mass Bounds from Thermalization After Inflation
We consider the conditions for the decay products of perturbative inflaton decay to thermalize. The importance of considering the full spectrum of inflaton decay products in the thermalization process is emphasized. It is shown that the delay between the end of inflaton decay and thermalization allows the thermal gravitino upper bound on the reheating temperature to be raised from 10 GeV to as ...
متن کاملReheating and thermalization in a simple scalar model.
We consider a simple model for the Universe reheating, which consists of a single self–interacting scalar field in Minkowskian space–time. Making use of the existence of an additional small parameter proportional to the amplitude of the initial spatially homogeneous field oscillations, we show that the behavior of the field can be found reliably. We describe the evolution of the system from the...
متن کاملReheating and Thermalization: Linear vs. Non-linear Relaxation
We consider the case of a scalar field, the inflaton, coupled to both lighter scalars and fermions, and the study the relaxation of the inflaton via particle production in both the linear and non-linear regimes. This has an immediate application to the reheating problem in inflationary universe models. The linear regime analysis offers a rationale for the standard approach to the reheating prob...
متن کاملInflation with Holographic Dark Energy
We investigate the corrections of the holographic dark energy to inflation paradigm. We study the evolution of the holographic dark energy in the inflationary universe in detail, and carry out a model-independent analysis on the holographic dark energy corrections to the primordial scalar power spectrum. It turns out that the corrections generically make the spectrum redder. To be consistent wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016